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Abstract Cost spanning tree problems concern the construction of a tree which
provides a connection with the source for every node of the network. In this paper, we
address cost sharing problems associated to these situations when the agents located
at the nodes act in a non-cooperative way. A class of strategies is proposed which pro-
duce minimum cost spanning trees and, at the same time, are strong Nash equilibria
for a non-cooperative game associated to the problem. They are also subgame perfect
Nash equilibria.
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1 Introduction

The concept of spanning tree is of major importance for operation researchers inter-
ested in constructing network models which describe the way to connect a set of users
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to a source using the smallest amount of resources. When only the building costs are
considered, the focus is on the identification of minimum cost spanning trees. The
study of minimum cost spanning trees has been an important area of research, both
from the theoretical point of view, where a number of efficient algorithms to produce
minimum cost trees have been developed, such as Kruskal (1956) and Prim (1957),
and also in applications, which have been widely used by communication companies
in circuit design, cable T.V. networks, etc.

However, apart from the design of minimum cost networks, other relevant issues
also arise in relation to these operation research problems. Once the tree which con-
nects the users is obtained, if the problem of allocating the costs of the spanning tree
between the users is to be considered, then the situation can be modeled as a game.

From a game theoretical perspective two kinds of situations concerning the alloca-
tion of costs in spanning trees can be explored. In a cooperative environment all the
users cooperate in order to induce a consensus allocation of costs. However, the agents
can also act in a non-cooperative way. In these cases the strategies they will adopt are
crucial to the outcome.

The cooperative spanning tree model is well-known from Bird’s paper (1976). He
proposed a cost allocation scheme that consists of assigning to each user the cost of
the incident edge in the unique path that links this user with the source. Granot and
Huberman (1981) then showed that the allocations arising from a Bird’s cost allocation
scheme are always in the core of the minimum cost spanning tree cooperative game.
A survey of cooperative games associated to cost spanning tree problems can be seen
in Borm et al. (2001).

However, in some situations where the focus is on the analysis of the stability and
efficiency of a social and economic model of minimum cost spanning tree formation,
a non-cooperative approach for the allocation of costs may be appropriate. Several
papers study cost spanning tree problems from this point of view. Mutuswami and
Winter (2002) introduce a mechanism for network formation in a framework where
agents have some private benefits which affect the final outcome. However, costs are
usually observable whilst benefits are often not, and in the classic setting where pri-
vate benefits are not taken into account, their mechanism is not easy to interpret. For
instance, as already pointed out by Bergantiños and Lorenzo (2004), the role of the
source node is unclear.

The analysis of minimum cost spanning tree formation presented in our paper is
based on the non-cooperative multi-stage game introduced in Bergantiños and Lorenzo
(2004). In this approach (as in others already used in the literature; see for instance
Bergantiños and Lorenzo (2004); Bergantiños and Lorenzo (2005), and the refer-
ences therein) we assume that agents only play pure strategies and agents’ decisions
depend only on who is already connected to the network and not on the order in
which agents did connect, i.e, one assumes that past history may not be available
and therefore, decisions are made based on current information. Moreover, in our
proposal a minimum cost spanning tree has to be constructed for the agents who
are involved up to any stage. This is a collective efficiency property that should be
required when modeling a variety of situations, for instance, in those cases in which
a central authority is funding the project and will not support it unless this condition
is fulfilled.
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Our interest lies in the identification of those strategies that produce minimum cost
spanning trees which are at the same time Nash equilibria.

Bergantiños and Lorenzo (2004) study a class of strategies for these games which
are Nash equilibria but do not necessarily yield minimum cost spanning trees. These
authors also, in Bergantiños and Lorenzo (2005), study another class of strategies in
which the agents have threshold costs, and prove that they are optimal provided that
they are Nash equilibria. Note that these strategies need not even be Nash equilibria.

In this paper, we introduce the class of opportune moment strategies which, at
the same time, are Nash equilibria and produce minimum cost spanning trees. We
also prove that these strategies are subgame perfect Nash equilibria and strong Nash
equilibria.

In addition, it is also important to note that the payoffs provided by any profile
of opportune moment strategies constitute a core cost allocation in corresponding the
cooperative game, since they are Bird cost allocations. Although there is a well-known
criticism of Bird tree allocations (Granot and Huberman 1981), in that it discriminates
against players that connect earlier to the source, this criticism is not relevant in our
non-cooperative framework. Indeed, the chance of ending up unconnected (and thus
paying the penalty cost) does not increase with an earlier connection, and in most cases
decreases. Hence, our opportune moment strategies can be seen as a new justification
for the usage of Bird allocations in minimum cost spanning tree games.

The paper is organized as follows. Basic concepts on minimum cost spanning trees
are provided in Sect. 2, where a result, on which part of our analysis relies, is also
presented. In Sect. 3, a non-cooperative game that models how the agents connect to
the source is described. Finally, the class of opportune moment strategies is proposed
and analyzed in Sect. 4.

2 Basic concepts

There is a finite set of nodes, N = {1, 2, . . . , n}, and each of them has to connect to a
common root, 0, the source node or the common supplier.

For any subset of nodes S ⊆ N , denote by S0 = S ∪ {0} and by GS the graph
(S0, ES0), where S0 represents the set of nodes and ES0 is the set of arcs or edges,
ES0 ⊆ {(i, j) ∈ S0 × S0, | i �= j}. The element (i, j) ∈ ES0 is an edge that connects
node i and node j . The graph GS is said to be a complete graph if ES0 = {(i, j) ∈
S0 × S0, | i �= j}.

Given GS , for i, j ∈ S0, a subset P(i, j) ⊆ ES0 is a simple path (a path from now
on) from i to j if P(i, j) = {(i1, i2), (i2, i3), . . . , (ik, ik+1)}, where i1 = i , ik+1 = j ,
with k ≥ 1 and the intermediate nodes, i2, i3, . . . , ik , are all different from i and j and
appear exactly twice in the sequence. A cycle is a path whose initial and final nodes
coincide.

The graph GS is said to be connected if for each i, j ∈ S0, i �= j , there is at least a
path from i to j . A connected graph, GS , that does not contain any cycle is said to be a
spanning tree on S0. To simplify the notation we denote by TS the spanning tree on S0
and also the set of edges in the tree. Let T S denote the set of all spanning trees on S0.
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Let G N be the complete graph (N0, EN0). Denote by ci j the cost associated with
(i, j) ∈ EN0 , and by c the matrix of costs c = (ci j )i, j∈N0 . We assume that ci j ≥ 0,
ci j = c ji for all i, j ∈ N0 and cii = 0 for all i ∈ N0. The total cost of a spanning
tree, TS , is c(TS) = ∑

(i, j)∈TS
ci j . A spanning tree, TS , is a minimum cost spanning

tree (MCST from now on) if TS ∈ arg minT ∈T S c(T ).
For i ∈ N\S, denote by mS

i = min j∈S0{ci j } the minimum connection cost of node i
to a node in S0, and by Si

0 = { j ∈ S0 | ci j = mS
i } the set of nodes in S0 to which node

i can connect at cost mS
i . Let mS be the minimum connection cost of nodes in N \S

to nodes in S0, mS = mini �∈S{mS
i }, and let M S be the set of nodes that can connect to

S0 with this minimum cost, M S = {i ∈ N \S | ∃ j ∈ S0, ci j = mS}.
For each i ∈ N denote by Bi the set of nodes to whom node i could connect at

its minimum cost, Bi = { j ∈ N0\{i} | ci j ≤ cik, ∀k ∈ N0\{i}}. Let M S∗ be the set
of nodes in N \S that can connect to S0 with their cheapest connection, M S∗ = {i ∈
N \S | Bi ∩ S0 �= ∅}. For each element k ∈ M S∗ we associate (arbitrarily) a unique
element l(k) ∈ Bk ∩ S0. Then we set E S∗ = {(k, l(k))| k ∈ M S∗ }.

We now establish a result about minimum cost spanning trees that will be instru-
mental in the analysis of the problem presented in this paper.

Theorem 2.1 Let TS be a spanning tree on S0 ⊂ N0, that is part of some MCST on N0.
If i ∈ M S, j ∈ Si

0, then, at least one of the MCSTs on N0 contains TS ∪ {(i, j)} ∪ E S∗ .

Proof As a consequence of the properties on spanning trees, (see, for instance,
Theorem 2.1, page 11, in Wu and Chao (2004)) if, when i ∈ M S and j ∈ Si

0, the set of
trees (the forest) {TS, T{i}, i ∈ N \S} is considered, then at least one of the MCSTs on
N0 contains TS ∪{(i, j)} since ci j is the cheapest connection between TS and any other
tree in the forest. Now, by considering the forest {TS ∪ (i, j), T{k}, k ∈ N \S ∪ {i}}
and any i∗ ∈ M S∗ , the same reasoning can be applied to connect i∗ to a unique node
j∗ ∈ Si∗

0 , since ci∗ j∗ is the cheapest connection for i∗ and therefore is the cheapest
connection between T{i∗} and any other tree in the forest. Hence, at least one of the
MCSTs on N0 contains TS ∪ {(i, j) ∪ (i∗, j∗)}. All the remaining nodes i∗ ∈ M S∗ can
be connected to a node in S0 in the same way and the result follows. �

It is important to point out that to derive the result in Theorem 2.1 it is not sufficient
for TS to be a MCST on S0, but it is necessary that TS be contained in a MCST on N0.
The following example illustrates this point.

Example 1 Consider N = {1, 2, 3} and the complete graph on N0 represented in
Fig. 1, where the connection costs are c01 = 2, c02 = 15, c03 = 30, c12 = 4,
c13 = 40, c23 = 3.

For S = {1, 3} the tree TS = {(0, 1), (0, 3)} is a MCST on S0. However, when
agent 2 uses his cheapest connection TS ∪ {(2, 3)} is not a MCST on N0.

3 A non-cooperative cost spanning tree game

The cooperative MCST game arises when analyzing the problem of allocating the
costs associated to a spanning tree in a graph between the users or agents which are
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Fig. 1 Illustration of Example 1
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located at the nodes of a graph, with a node reserved for a common supplier with no
participation in the cost sharing problem. This model has been widely studied in the
literature (Bird 1976; Granot and Huberman 1981; Borm et al. 2001). One relevant
result on this topic is that allocations of costs arising from Bird’s cost allocation rule
are always in the core of the game.

However, in many real-life situations, agents make their decisions independently
and therefore it is convenient to address the problem from a non-cooperative point
of view. The following is the description of a non-cooperative game representing the
network formation in a cost spanning tree problem. A reason why the agents should
join such a game could be that some authority (it might be the grand coalition itself)
chooses this mechanism as a tool to decide which edges to build and how to allocate
the costs.

Consider the set of players (or agents) N = {1, 2, . . . , n}. Each player has to con-
nect his node to the common supplier. In order to describe how are the agents going to
make the connections to the source, a non-cooperative multi-stage game, (N0, c), is
associated to each cost spanning tree problem in the complete graph G N with costs c.

Initially, no edges are constructed and all the nodes in G N are unconnected. At the
first stage each agent decides whether to connect to the source or not. If no agent con-
nects or every agent connects, then the game finishes. Otherwise, the game proceeds to
a second stage. In subsequent stages non-connected agents face a set of agents that are
already connected, and have to decide whether to remain unconnected or to connect
to one of the connected agents or directly to the source. The game finishes at the stage
when no more agents connect or when all the agents are already connected.

In this approach we assume that agents only play pure strategies and agents’ deci-
sions depend only on who is already connected to the network and not on the order in
which agents have connected. In other words, the decisions of the agents depend only
on what “is on the table” and not on the way in which things are “put on the table”.

At any stage, if agent i connects to agent j , then agent i pays the connection cost
ci j . It is assumed that all the agents want to be connected, even if they have to pay
their highest cost, since otherwise they would not join the game. This situation can
be formalized by stating that if when the game finishes some agent is not connected,
then he pays a very high penalty cost as compared with his most expensive connection
cost.

Denote by 2N
0 (i), the set of all the coalitions which contain the source and do not

contain agent i , 2N
0 (i) = {S0 = S ∪ {0}, | i /∈ S ⊂ N }. Since the decision of each

agent depends only on the set of agents already connected, a strategy for agent i ∈ N
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is a map xi : 2N
0 (i) −→ N0 ∪{a}, such that xi (S0) ∈ S0 ∪{a}, where xi (S0) = j ∈ S0

means that agent i connects to agent j , and xi (S0) = a means that agent i remains
unconnected.

Any profile of strategies of the set of agents, N , is denoted by x = (xi )i∈N . Denote
by Xi the set of all possible strategies for agent i and by X the set of all possible
profiles of strategies of the set of agents, N .

A profile of strategies x of the game (N0, c) induces a graph which is a tree on a
subset S0 ⊆ N0, denoted by T x . This tree is not necessarily a spanning tree on N0. In
contrast to the analysis in Bergantiños and Lorenzo (2004); Bergantiños and Lorenzo
(2005), we assume that a MCST for the subset of connected agents has to be built at
every stage of the game. If the total cost paid by all the players is to be minimized,
then the solution should consist of a spanning tree, since unconnected agents will have
to pay a very large cost.

In what follows our interest is focused on the characterization of those profiles of
strategies that are Nash equilibria and at the same time induce a MCST. These two
conditions represent first, the individual rationality requirement which underlies the
concept of Nash equilibria, and secondly, a collective rationality property, which indi-
cates that it is not possible to improve the final outcome of the game in a collective
sense.

In order to formally define these properties we use the following notation. Given a
profile of strategies x for the whole set of players, N , and a subset of players S ⊂ N ,
denote by xS (x−S) the projection of x on S (N \S) that represents the corresponding
profile of strategies for the agents in S ( N \S). By (x; x ′

S) we represent the profile of
strategies in which agents in S deviate from x by using the profile of strategies x ′, that
is, (x; x ′

S)i = x ′
i for i ∈ S and (x; x ′

S) j = x j for all j �∈ S.
Let ci (x) denote the connection cost for agent i when a profile of strategies x is

adopted. The total cost induced by x is denoted1 by c(x), c(x) = ∑
i∈N ci (x).

Definition 3.1 The profile of strategies x ∈ X is a Nash equilibrium (NE) for the
game (N0, c), if for every agent i ∈ N , ci (x) ≤ ci (x; x ′

i ) for all x ′
i ∈ Xi , x ′

i �= xi .

That is, x is a NE if any unilateral deviation of agent i from the profile of strategies
x does not yield an improvement in the cost assigned to agent i .

Notice that in the setting of this paper, any NE induce a spanning tree on N0.

Definition 3.2 The profile of strategies x ∈ X is a strong Nash equilibrium (SNE) for
the game (N0, c), if for each coalition S ⊂ N and each x ′

S �= xS , there is at least one
agent i ∈ S such that ci (x) ≤ ci (x; x ′

S).

It is easy to see that, in general, this last equilibrium concept is stronger than that
of NE. A SNE is such that deviations from the strategy of any group of agents will not
produce an improvement in the cost of all the agents that deviate.

Nevertheless, in our framework, a NE of the game (N0, c) is also a SNE, as is stated
in the following Lemma.

1 We will slightly abuse notation by using ci (x) and c(x) instead of ci (T
x ) and c(T x ).
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Fig. 2 Illustration of Example 2
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Lemma 3.3 If x ∈ X is a Nash equilibrium for the game (N0, c), then x is a strong
Nash equilibrium.

Proof Suppose on the contrary that x is a non-strong Nash equilibrium for a game
(N0, c). Let H ⊂ N be a subset of agents and y be a profile of strategies of the agents
in H such that ci (x; yH ) < ci (x) for all i ∈ H . Let T ⊆ N \H be the set of players
who connect independently of the actions of the members of H , i.e., who connect if
the members of N\H play according to x and if agents in H always play a. Hence, for
all i ∈ H , ci (x) ≤ min j∈T ∪{0}{ci j }, since x is a NE and the strategy of waiting until
all members of T are connected costs at most this amount. Let i be the first player in
H that connects when (x; yH ) is played. Then i uses an arc to a node in T ∪ {0}, and
therefore ci (x; yH ) ≥ min j∈T ∪{0}{ci j }. This is a contradiction. �

Let x = (xi )i∈N be a profile of strategies for the set of agents, N , and let T x be
the tree induced on S′

0 ⊆ N0 (this tree connects a set of agents S′ to the source). Let
TS be any subtree of T x , which contains the source node, where S ⊂ S′ is the set of
involved agents.

Denote N \S by S̄ and shrink TS to a fictitious node 0̃ that will be considered the
source for the nodes in S̄. We define the subgame (S̄0̃, cS), where S̄0̃ = S̄ ∪ {0̃} and
cS

i j = ci j for all i, j ∈ S̄ cS
i 0̃

= mink∈S0{cik} for all i ∈ S̄.

Definition 3.4 The profile of strategies x ∈ X is a subgame perfect Nash equilibrium
(SPNE)2 for the game (N0, c), if x−S is a NE for any subgame (S̄0̂, cS).

Note that not all NE are SPNE, as is shown in the following example (see Fig. 2).

Example 2 Consider a graph where two players have the same connection costs with
the source and between them, that is, c01 = c02 = c12 = 1.
Let x be defined by xi ({0}) = 0 and xi ({0, 1, 2} \ {i}) = a. Then x is a non-subgame
perfect Nash equilibrium, because the players do not play optimally in the one-player
subgame.

In general, a NE does not induce a MCST. Moreover, there exist profiles of strat-
egies which are not NE, but induce MCST on N0. This is shown in the following
example.

Example 3 Consider N = {1, 2, 3} and the complete graph on N0 with connection
costs c01 = 10, c02 = 25, c03 = 15, c12 = 20, c13 = 15, c23 = 5. Figure 3 shows
the MCSTs T = {(0, 1), (1, 3), (2, 3)} and T ′ = {(0, 1), (0, 3), (2, 3)} with total cost
c(T ) = c(T ′) = 30, on N0.

2 See Van Damme (1991).
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Fig. 3 T and T ′ are MCSTs on
the complete graph
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Consider the profile of strategies x = (xi )i∈N , defined as follows:

xi (S0) =
{

j ∈ Si
0 if i − 1 ∈ S0

a otherwise

This strategy is a NE but it generates the tree T x = {(0, 1), (1, 2), (2, 3)} which is not
a MCST, since c(x) = 35.

On the other hand, consider the profile y = (yi )i∈N , where

y1({0}) = 0 y1({0, 3}) = 0 y1({0, 2}) = 0 y1({0, 2, 3}) = a

y2({0}) = a y2({0, 1}) = 1 y2({0, 3}) = 3 y2({0, 1, 3}) = 3

y3({0}) = 0 y3({0, 1}) = a y3({0, 2}) = 2 y3({0, 1, 2}) = 2

The profile y produces the minimum cost spanning tree T y = T ′. However, it is not
a NE, since if agent 3 deviates by adopting the following strategy

y′
3({0}) = a y′

3({0, 1}) = a y′
3({0, 2}) = 2 y′

3({0, 1, 2}) = 2

then the tree generated is T (y;y′
3) = T = {(0, 1), (1, 2), (2, 3)}, and agent 3 pays a

lower cost, since c3(y; y′
3) = 5, while c3(y) = 15.

4 Opportune moment strategies

The idea underlying the strategies described below is that each agent would like to con-
nect using his cheapest connection. In the case where each agent’s cheapest connection
generates a spanning tree, this tree is a MCST. However, in general this strategy does
not induce a spanning tree and further analysis is necessary to identify the strategies
that the agents will adopt in the game. A first observation is that when at a certain stage
of the game (N0, c) the cheapest connection of an agent is feasible, he will connect to
the existing tree, by using what we call his best individual opportunity, but when this
is not the case, he would like to delay the connection, since by waiting he may have
the opportunity of a better connection.

Nevertheless, the necessity of producing minimum cost spanning trees forces the
agents to connect at a certain moment and use what we call their best collective
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opportunity. That is, each agent will have to connect at the stage in which he provides
the cheapest connection from among all the feasible connections.

We incorporate a ranking of the players in order to solve the ties when there are
several agents that can use their best collective opportunity. Let σ : N → N denote
a permutation function that reflects this ranking. For each ranking, σ , let fσ : 2N →
N denote the function that assigns to each coalition M ∈ 2N the agent, iσ ∈ M
( fσ (M) = iσ ∈ M), such that σ(iσ ) ≤ σ(i), ∀ i ∈ M .

The profiles of strategies in the following class depend on the ranking, σ , used as
a tie breaker to select the agent who is going to connect in the present stage from
among those who provide the cheapest connection to the existing tree. That is, given
the ranking, σ , when agents in S are already connected, a unique agent in M S = {i ∈
N\S | ∃ j ∈ S0, ci j = mS}, fσ (M S), is chosen to connect to the existing tree. These
profiles of strategies include also the possibility of connecting by using the agents’
best individual opportunity. We will call these profiles profiles of opportune moment
strategies.

Definition 4.1 Given a ranking of the players, σ , a profile of opportune moment strat-
egies, xσ ∈ X , for the game (N0, c) is defined as follows:

xσ
i (S0) =

⎧
⎪⎨

⎪⎩

k ∈ Bi ∩ S0 if Bi ∩ S0 �= ∅
j ∈ Si

0 if i ∈ M S and fσ (M S) = i

a otherwise

Notice that by using a profile of opportune moment strategies, more than one agent
may connect to the existing tree at any stage, but only one of these agents uses his best
collective opportunity. Furthermore, a profile of opportune moment strategies is well
defined since, if at the same time, Bi ∩ S0 �= ∅ and i ∈ M S , then Bi ∩ S0 = Si

0.
Even for a fixed ranking of the players, the profile of opportune moment strategies

may not be unique. If for agent i , who is going to connect to the existing tree, Si
0 or

Bi ∩ S0 are not singletons, any choice leads to different spanning trees with the same
costs for the agent.

It is important to point out that when the costs associated to the connections in the
network are all different, a ranking of the players is not needed since no ties occur and
a unique MCST exists. In this case every ranking induces the same strategy.

Notice also that opportune moment strategies differ from those strategies inspired
by Prim’s algorithm (i.e., those strategies which consist of connecting to the tree at
the stage when the agents provide the cheapest connection to the existing tree) with a
ranking as a tie breaker, that is:

yσ
i (S0) =

{
j ∈ Si

0 if i ∈ M S and fσ (M S) = i

a otherwise
(4.1)

It is easy to see that, given a ranking of the players, σ , if xσ is a profile of oppor-
tune moment strategies and yσ = (yσ

i )i∈N is the above strategy, then T xσ
does not

necessarily coincide with T yσ
, as can be seen in the following example.
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Fig. 4 Complete graph
(Example 5)
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Fig. 5 Illustration of Example 5
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Example 4 Consider the graph in Example 2. There are two possible rankings of
the players, σ1 and σ2, where σ1(1) = 1, σ1(2) = 2 and σ2(1) = 2, σ2(2) = 1.
fσ1 generates two spanning trees by using yσ1 : T yσ1

1 = {(0, 1), (1, 2)} and T yσ1

2 =
{(0, 1), (0, 2)}. Analogously, T yσ2

1 = {(0, 2), (1, 2)} and T yσ2

2 = {(0, 1), (0, 2)} =
T yσ1

2 are the two spanning trees generated by using yσ2 . Nevertheless, if the players
adopt a profile of opportune moment strategies, then only one spanning tree is gen-
erated regardless of the ranking considered, T xσ1 = T xσ2 = {(0, 1), (0, 2)}, and the
game finishes at the first stage.

Moreover, for an agent i it is always at least as good to choose a profile of oppor-
tune moment strategies, xσ

i , as to play yσ
i . The following example shows that the

improvement for that agent i can be strict.

Example 5 Consider the graph with costs represented in Fig. 4.
The strategy used by player 1 is yσ

1 and the strategy of player 2 consists of connecting
to player 3 when player 3 is connected, and remaining unconnected meanwhile.

If player 3 uses a profile of opportune moment strategies, then the tree in Fig. 5a is
constructed and he pays a connection cost of 3. However, if player 3 uses yσ

3 he will
be unconnected when the game ends, as represented in Fig. 5b, and therefore, he will
have to pay the penalty cost.

This result is formally established in the following theorem.

Theorem 4.2 Let σ be a ranking for the players. For all i ∈ N, let xσ
i be an opportune

moment strategy for player i and yσ
i be the strategy given in 4.1. Then ci (x; xσ

i ) ≤
ci (x; yσ

i ) for all x ∈ X.
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Proof Let x ∈ X be a profile of strategies for the set of players N . If, when player i
deviates from x by using xσ

i , the game ends and player i is still unconnected, then he
would also be unconnected if he had used yσ

i , and the result follows. On the other hand,
by deviating from x by using xσ

i , player i connects when a group of players S ⊂ N
is already connected. In this case ci (x; xσ

i ) = ci j , for some j ∈ S0. If j ∈ Bi ∩ S0,
then ci j = ci (x; xσ

i ) ≤ ci (x; yσ
i ), since ci j is the minimum cost that player i can pay.

Otherwise, j ∈ Si
0, and ci j = ci (x; xσ

i ) = ci (x; yσ
i ) since, by deviating from x by

using yσ
i , player i connects to j ′ ∈ Si

0 and ci j = ci j ′ = mS . �
The following result states that a profile of opportune moment strategies is a SPNE

and induces a MCST on N0.

Theorem 4.3 Given a ranking for the players, σ , a profile of opportune moment strat-
egies for the game (N0, c) induces a MCST on N0 and is a SPNE. Conversely, if the
profile of strategies, x, induces a MCST on N0, then a ranking of the players, σ , and
a profile of opportune moment strategies, xσ , exist, such that ci (x) = ci (xσ ) for all
i ∈ N.

Proof By recursively applying the result stated in Theorem 2.1, it follows that the tree
generated by a profile of opportune moment strategies is a MCST on N0.
To prove that a profile of opportune moment strategies, xσ , is a SPNE consider the
spanning tree T xσ

, any subtree TS of T xσ
, with root on the source node (which could

possibly consist of only the source node), and the set of agents S ⊂ N involved
(S0 = S ∪ {0}). Let (S̄0̂, cS) be the corresponding subgame. Let us assume that player
i /∈ S deviates from xσ by using xi . One of the following situations occurs:

1. Either
(a) Bi ∩ S0 = ∅ and i /∈ M S , or
(b) Bi ∩ S0 = ∅, i ∈ M S and fσ (M S) �= i .

If player i deviates from xσ by using xi , which consists of connecting to any node
j ∈ S0 of the current subtree, then (xσ ; xi )i (S0) = xi (S0) = j ∈ S0 and player
i pays ci (xσ ; xi ) = ci j ≥ mS

i . Since every player in S̄, except for player i , uses
xσ
−(S∪{i}), if player i did not deviate from xσ

i and remained unconnected (waiting
for his best individual opportunity or for his best collective opportunity), then
the game would not end, because some player in N \(S ∪ {i}) would connect in
subsequent stages. Indeed, the game would not end until this best individual or col-
lective opportunity arrived, that is, at a certain stage, a set of nodes, R0 = R∪{0} ∈
2N

0 (i), S0 ⊂ R0, such that Bi ∩ R0 �= ∅ or i ∈ M R , would already be connected.
Therefore, if player i had used an opportune moment strategy, xσ

i , he could have
connected at this stage paying a cost ci (xσ ) = m R

i ≤ mS
i ≤ ci j = ci (xσ ; xi ).

2. Bi ∩ S0 = ∅, i ∈ M S and fσ (M S) = i , but either
(a) (xσ ; xi )i (S0) = xi (S0) = j �∈ Si

0, or
(b) (xσ ; xi )i (S0) = xi (S0) = a.

It is clear that player i does not improve by connecting to j �∈ Si
0. On the other

hand, if player i deviates from xσ by using xi , which consists of remaining uncon-
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nected, and the rest of the agents play xσ
−(S∪{i}), even when M S∗ �= ∅ and agents

in M S∗ connect to S0, then a cheaper connection for agent i will not appear, since
agents in M S∗ connect at their cheapest connections which are not cheaper than
mS

i . Therefore, agent i does not improve by deviating from his opportune moment
strategy and losing his best collective opportunity. Moreover, in the next stage
of the game, when a set of nodes, R0 = R ∪ {0} ∈ 2N

0 (i), R0 = S0 ∪ M S∗ is
already connected, the situation is the same, that is, Bi ∩ R0 = ∅, i ∈ M R and
fσ (M R) = i . Therefore, agent i does not improve by delaying his connection.

3. Bi ∩ S0 �= ∅, but either
(a) (xσ ; xi )i (S0) = xi (S0) = j �∈ Bi ∩ S0, or
(b) (xσ ; xi )i (S0) = xi (S0) = a.

Since Bi = { j ∈ N0 \{i} | ci j ≤ cik, ∀k ∈ N0, k �= i}, then player i does
not improve by joining j �∈ Bi ∩ S, nor by waiting for a cheaper connection and
therefore ci (xσ ; xi ) ≥ ci (xσ ).

Conversely, let x be a profile of strategies for the set of players, N , that induce a
MCST on N0. Let T x be the induced MCST. Since, by using Prim’s algorithm, all
minimum cost spanning trees in the graph can be generated, consider the ranking of the
players, σ , that reflects how the players are connected by Prim’s algorithm when T x

is the result. Consider also the profile of opportune moment strategies xσ . Obviously,
ci (x) ≥ ci (xσ ) for all i ∈ N . Moreover, the equality holds since if, at a stage when
the nodes in S0 = S ∪ {0} are connected, the players in M S∗ (if M S∗ �= ∅) use their
cheapest connection, although they are not due to connect at that stage, then a cheaper
connection for any unconnected node, i , will not appear. Therefore, ci (x) = ci (xσ )

for all players that, when using xσ , do not use their best individual opportunity (and it
is not their best collective opportunity). The equality holds also for those players that,
by playing xσ , use their best individual opportunity when it is not their best collective
opportunity. This happens due to the fact that they use their cheapest connection which
is already available. �

Note that in the converse part of Theorem 4.3 we have established that the allo-
cation of costs provided by any profile of strategies inducing a MCST (which is not
necessarily NE) can always be attained by a profile of opportune moment strategies
(although perhaps the MCST obtained is not the same since a profile of opportune
moment strategies and a profile of strategies based on Prim’s algorithm as defined
in (4.1) may induce more than a single MCST). The profile of strategies, y, for the
game described in Example 3, induces a MCST, T ′, and it is not a NE. However, it
is easy to see that by using a profile of opportune moment strategies, regardless of
the ranking considered, the MCST, T ′, can be generated, and the players will pay the
corresponding costs.

Another consequence of Theorem 4.3 that relates this non-cooperative solution to
the cooperative approach is that, since opportune moment strategies generate min-
imum cost spanning trees, then the allocations of costs they induce coincide with
those obtained by using Bird’s rule, and therefore, are in the core of the cooperative
minimum cost spanning tree game.
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